摘要: |
线电荷在充满电各向异性介质的无限长矩形腔中激发的电势,是各向异性介质中泊松方程的边值问题;主要应用本征函数法和分离变量法求解了边界条件为第一类齐次和第一类非齐次边界条件时,线电荷在无限长矩形腔内激发的电势;在令ε11=ε22=ε33=ε的情况下,所得的结果可适用于电各向同性介质。 |
关键词: 电各向异性介质 泊松方程 本征函数 分离变量法 δ函数 二重傅里叶级数 |
DOI: |
分类号: |
基金项目: |
|
The Electric Potential of a Line Charge in an Infinitely Long Rectangular Cavity |
LI Wen lue
|
Abstract: |
The electric potential of linear charge in an infinite rectangular cavity filled with anisotropic dielectric is the boundary value problem of Poisson equation in anisotropic media. The electric potential of linear charge in the infinite rectangular cavity is solved by using method of eigenfunction and method of separation of variables,when the walls of the cavity meet the first homogeneous boundary conditions or meet the first nonhomogeneous boundary conditions. The results can apply to isotropic dielectric in the situation: ε11=ε22=ε33=ε. |
Key words: anisotropic dielectric Poisson equation eigenfunction method of separation of variables δ Function double Fourier series |