引用本文:姚行艳1,2, 喻其炳1,2, 陈志强1,2, 李川1,2.基于神经网络的多孔泡沫金属磁流变液阻尼器模型(J/M/D/N,J:杂志,M:书,D:论文,N:报纸).期刊名称,2016,33(3):6-9
CHEN X. Adap tive slidingmode contr ol for discrete2ti me multi2inputmulti2 out put systems[ J ]. Aut omatica, 2006, 42(6): 4272-435
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 861次   下载 735 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于神经网络的多孔泡沫金属磁流变液阻尼器模型
姚行艳1,2, 喻其炳1,2, 陈志强1,2, 李川1,21,2
1.重庆工商大学 检测控制集成系统重庆市工程实验室,重庆 400067;2.重庆工商大学 国家智能制造服务国际科技合作基地,重庆 400067
摘要:
多孔泡沫金属磁流变液阻尼器是采用泡沫金属储存磁流变液的新型阻尼器。通过磁流变阻尼器的性能试验研究,得到了阻尼力与电流之间的关系,采用BP神经网络,建立了磁流变阻尼器正向模型。结果显示,神经网络模型能准确地预测磁流变阻尼器的阻尼力和控制电流,证明了该方法的有效性,与已有的模型相比,具有精度高,计算简便等特点。
关键词:  神经网络  多孔泡沫  磁流变液  阻尼器
DOI:
分类号:
基金项目:
A Neural Network Model of Porous Metal Foam Magnetorheological Fluid Damper
YAO Xing yan1,2, YU Qi bing1,2, CHEN Zhi qiang 1,2, LI Chuan1,2
Abstract:
Porous metal foam magnetorheological fluid damper is a new damper using the foam metal storage of the MRF. By MR damper performance test, we studied the relationship between the damping force and different currents, a magneto rheological damper forward model is set up by BP neural network. Simulation results show that the neural network model can accurately predict the MR damper damping force and control current, and it also proves the effectiveness of this method. Compared with the existing model, the calculation is simple with high accuracy.
Key words:  neural networks  porous foams  magnetorheological fluid  dampers
重庆工商大学学报(自然科学版) 版权所有
地址:中国 重庆市 南岸区学府大道19号 重庆工商大学学术期刊社 邮编:400067
电话:023-62769495 传真:
您是第4752924位访客
关注微信二维码