摘要: |
通过研究一类特殊图的顶点染色,得到了以下结果:给出了〖JB(|〗S〖JB)|〗=p-3且p∈〖JB({〗4,5,〖JB(〗6〖JB)}〗〖JB)〗 ,图G的顶点染色数;证明了〖JB(|〗S〖JB)|〗>〖SX(〗p〖〗2〖SX)〗且〖JB(|〗S〖JB)|〗=p-3的图G不存在第p-m类图,m≥7且m是正整数;证明了〖JB(|〗S〖JB)|〗=p-3时,χ(G)≤4θ(G)+θ2(G)-1;进一步证明了猜想χ(G)≤4θ(G) |
关键词: 顶点染色 最大团 第k类图 图的厚度 |
DOI: |
分类号: |
基金项目: |
|
Proof of a Conjecture of A Class of Vertex Coloring of Special Graphs |
ZHANG Xiang bo
|
Abstract: |
Throughout the study on a class of vertex coloring of special graphs, this paper gives the following results:
(1) Give vertex coloring number of graph G, 〖JB(|〗S〖JB)|〗=p-3and p∈〖JB({〗4,5,〖JB(〗6〖JB)}〗〖JB)〗 .
(2) Prove that graph G of〖JB(|〗S〖JB)|〗>〖SX(〗p〖〗2〖SX)〗 and 〖JB(|〗S〖JB)|〗=p-3has no the p-m class of graph, m≥7and m is positive integer.
(3) Prove that χ(G)≤4θ(G)+θ2(G)-1, when〖JB(|〗S〖JB)|〗=p-3.
All kinds of vertex coloring number of graph G when〖JB(|〗S〖JB)|〗=p-3are given from these results above, and further it is proven that the conjecture χ(G)≤4θ(G)+θ2(G)-1 is right., which provide some thoughts and methods for further study on this conjecture and the graph vertex coloring. |
Key words: vertex coloring, the maximum clique, thekclass of graph, thickness of a graph |