摘要: |
若a1,a2,…,an是n-1个不同的整数,证明了当n≥4时,f(x)=(x-a1)(x-a2)…(x-an)-1在有理数域〖WTHZ〗Q〖WTBX〗上不可约;当n≥3时,f(x)=(x-a1)2(x-a2)2…(x-an)2+1在有理数域〖WTHZ〗Q〖WTBX〗上不可约. |
关键词: 有理数域 多项式 不可约 系数 次数 |
DOI: |
分类号: |
基金项目: |
|
Simple Generalization of a Class of Irreducible Polynomialsin Rational Number Field |
LI Zhi
|
Abstract: |
Suppose a1,a2,…,an are different Integers of n-1. This paper proves that if n≥4, the polynomial f(x)=(x-a1)(x-a2)…(x-an)-1 is irreducible in the rational number range Q, and if n≥3, the polynomial f(x)=(x-a1)2(x-a2)2…(x-an)2+1 is irreducible in the rational number range Q. |
Key words: rational number field irreducible polynomial coefficients degree |