引用本文:周伟峰, 江娟娟, 林园胜, 许钢.SVM与组合矩在工件识别中的应用研究(J/M/D/N,J:杂志,M:书,D:论文,N:报纸).期刊名称,2015,32(4):78-84
CHEN X. Adap tive slidingmode contr ol for discrete2ti me multi2inputmulti2 out put systems[ J ]. Aut omatica, 2006, 42(6): 4272-435
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 948次   下载 2134 本文二维码信息
码上扫一扫!
分享到: 微信 更多
SVM与组合矩在工件识别中的应用研究
周伟峰, 江娟娟, 林园胜, 许钢1
安徽工程大学 安徽省检测技术与节能装置省级实验室,安徽 芜湖 241000
摘要:
针对工件识别问题,提出了一种应用支持向量机(Support Vector Machine,SVM)与组合矩对工件进行识别的方法;通过对提取图像的Hu不变矩进行处理,形成利用组合矩进行工件识别的新方法;改进后的算法降低了特征维数,缩减了识别时间,提高了识别准确率;结合试验比较了两种方法的分类效果,其中提取Hu不变矩作为特征的识别率为82.3%,而采用组合矩作为特征的识别率高达94.1%,高于Hu不变矩作为特征的识别率.
关键词:  SVM  Hu不变矩  组合矩  工件分类
DOI:
分类号:
基金项目:
Research on the Application of SVM and Combined Moment in Mechanical Parts Recognition
ZHOU Wei-feng,JIANG Juan juan,LIN Yuan sheng,XU Gang
Abstract:
To solve the problem of mechanical parts recognition in the factory, a method of applying Support Vector Machine and combined moment to recognize mechanical parts is proposed. By extracting the Hu invariant moment of the image, combining the first and second moments into φ12, combining the third and fourth moments into φ34, combining the fifth and sixth moments into φ56, and ignoring the seventh momentφ7, the new method is constructed. The improved algorithm reduces feature dimension and recognition time, and at the same time improves recognition accuracy. The experiment comparing classification effect of the two methods shows that the recognition rate of the method extracting Hu invariant moments as features is 82.3%, while the recognition rate based on the combined moment as features is 94.1% which is higher than the former.
Key words:  SVM  Hu invariant moments  combined moment  artifacts taxonomy
重庆工商大学学报(自然科学版) 版权所有
地址:中国 重庆市 南岸区学府大道19号 重庆工商大学学术期刊社 邮编:400067
电话:023-62769495 传真:
您是第4752681位访客
关注微信二维码