摘要: |
一个图G的Randic指数定义为R(G)=〖DD(X〗(x,y)∈E(G)〖DD)〗〖JB([〗d(x)d(y)〖JB)]〗-〖SX(〗1〖〗2〖SX)〗,Randic指数是分子拓扑学中的重要指数;一种物质的理化性质与其分子结构图的Randic指数有相关性;Randic指数主要的研究是寻找某种类型图的Randic指数极值或次极值;具有最小Randic指数的单圈图为S+n,在此基础上导出具有次小Randic指数的单圈图G*n. |
关键词: 单圈图 次小 Randic指数 |
DOI: |
分类号: |
基金项目: |
|
The Second Minimum Randic Index in Unicyclic Graphs |
GUI Yun
|
Abstract: |
he Randic index R(G) of graph G is defined as R(G)=〖DD(X〗(x,y)∈E(G)〖DD)〗〖JB([〗d(x)d(y)〖JB)]〗-〖SX(〗1〖〗2〖SX)〗. The Randic index is an important index in molecular topology. There is a good correlation between physical and chemical properties of certain substance and Randic index of its molecular structure. Randic index is used to find the minimum and second minimum R-values in (pertinently chosen) classes of graphs. Unicyclic graph with minimum Randic index is S+n, on the basis of which, this paper gives the second minimum Randic index of unicyclic graphs G*n . |
Key words: Unicyclic graph second minimum Randic index |