|
摘要: |
通过对标准BP算法的改进,提出了一种L-M贝叶斯正则化优化算法,并把它应用到成都市居民消费水平预测中。经试验验证,L-M贝叶斯正则化的BP神经网络比相同条件下另外两种改进算法有更强的泛化能力,对居民消费水平有很好的预测效果。 |
关键词: BP神经网络 L-M优化算法 贝叶斯正则化算法 居民消费水平 |
DOI: |
分类号: |
基金项目: |
|
Application of a Kind of Improved BP Algorithm to Consumption Level |
SONG Feng
|
Abstract: |
Through improving standard BP algorithm,this paper proposes a kind of L-M Bayesian regularization optimization algorithm and applies this algorithm to the prediction of Chengdu resident consumption level.Experiment shows that BP neural network of L-M Bayesian regulaarization hais stronger generalization than another two kinds of improved algorithms under the same condition and has better forecasting effect on resident consumption level. |
Key words: BP neural netwok L-M optimization algorithm Bayesian regularization algorithm resident consumption level |