|  | 
			
             			 
		     | 摘要: | 
			 
		     | 聚类分析是模式识别的一个重要分支,本文以核心点和k-均值算法为基础,提出了一种基于参考点的快速k-均值算法。本算法以参考点作为第一个初始聚类中心,剩余初始聚类中心在核心点中选取,使得初始聚类中心能更好的反映模式样本集的几何特征,并且能减少迭代次数。 | 
			
	         
				| 关键词:  参考点  密度  k-均值 | 
			 
                | DOI: | 
            
                | 分类号: | 
			 
             
                | 基金项目: | 
          |  | 
           
                | A Fast K-means Algorithm Based on Reference and Density | 
           
			
                | LI You-ming | 
           
		   
             
                | Abstract: | 
			
                | Clustering analysis is an important branch of pattern recognition ,in?this?paper,?the?core-point?and?k-means?algorithm?as?the?foundation,?proposed?a?fast?k-means?algorithm?based?on?reference?and?density.?on?the?reference?point?as?the?first?initial?cluster?centers,?the?remaining?initial?clustering?center?in?the?core?points?are?selected,?the?initial?clustering?center?can?better?response?pattern?sample?set?of?geometric?features,?and?can?reduce?the?number?of?iterations. | 
	       
                | Key words:  reference -point  density  k- means |