|
摘要: |
聚类分析是模式识别的一个重要分支,本文以核心点和k-均值算法为基础,提出了一种基于参考点的快速k-均值算法。本算法以参考点作为第一个初始聚类中心,剩余初始聚类中心在核心点中选取,使得初始聚类中心能更好的反映模式样本集的几何特征,并且能减少迭代次数。 |
关键词: 参考点 密度 k-均值 |
DOI: |
分类号: |
基金项目: |
|
A Fast K-means Algorithm Based on Reference and Density |
LI You-ming
|
Abstract: |
Clustering analysis is an important branch of pattern recognition ,in?this?paper,?the?core-point?and?k-means?algorithm?as?the?foundation,?proposed?a?fast?k-means?algorithm?based?on?reference?and?density.?on?the?reference?point?as?the?first?initial?cluster?centers,?the?remaining?initial?clustering?center?in?the?core?points?are?selected,?the?initial?clustering?center?can?better?response?pattern?sample?set?of?geometric?features,?and?can?reduce?the?number?of?iterations. |
Key words: reference -point density k- means |