|
摘要: |
Pell方程Ax2-By2=-+1(A,B∈Z+,AB不是完全平方数)可解性的判别是一个非常有意义的问题.本文运用Legendre符号和同余的性质等初等方法给出了形如Ax2-By2=-+1(A,B∈Z+,AB不是完全平方数)型Pell方程无正整数解的六个给论,不是完全平方数型Pell方程无正整数解的六个结论. 这些结论对我们研究狭义Pell方程x2-Dy2=-+1(D不是完全平方数)起了重要作用. |
关键词: Pell方程、正整数解、素数、同余、Legendre符号 |
DOI: |
分类号: |
基金项目: |
|
On Pell Equation Ax2-By2=-+1 |
WAN Fei, DU Xian-cun
|
Abstract: |
The solubility of Pell equation Ax2-By2=-+1(A,B∈Z+,AB is a non-square positive integer) is a very meaningful question. In this paper, It is discussed about the positive integer solutions of Pell equation Ax2-By2=-+1(A,B∈Z+,AB is a non-square positive integer) by using the elementary method of Legendre symbol and property of congruence,it works out six conclusions to judge with the sets of Pell equation x2-Dy2=-+1(D is a non-square positive integer). |
Key words: Pell equation positive integer solution prime factor congruence Legendre symbol |