引用本文:田丽,曹安照,王蒙,周明龙,王静.基于SVM和神经网络组合预测模型的物流需求预测(J/M/D/N,J:杂志,M:书,D:论文,N:报纸).期刊名称,2012,29(9):61-64
CHEN X. Adap tive slidingmode contr ol for discrete2ti me multi2inputmulti2 out put systems[ J ]. Aut omatica, 2006, 42(6): 4272-435
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1136次   下载 2069 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于SVM和神经网络组合预测模型的物流需求预测
田丽,曹安照,王蒙,周明龙,王静
作者单位
田丽,曹安照,王蒙,周明龙,王静  
摘要:
物流需求的定量数据是区域物流发展政策和规划的重要依据,影响物流需求的因素很多,传统的预测方法无法全面考虑各种因素,预测精度较低。为了提高物流需求预测的精度,采用组合预测的方法,建立一种基于支持向量机和神经网络的组合模型。首先采用支持向量机进行预测得到预测基本数据,然后通过BP神经网络进行残差修正,通过算例仿真分析,结果表明组合预测模型具有更高的精度,是一种有效的预测方法,为物流需求预测提供了新的思路。
关键词:  物流需求  支持向量机  神经网络
DOI:
分类号:
基金项目:
Research on Logistic Demand Forecast Based on Support Vector Machines and Neural Network
TIAN Li, CAO An-zhao, WANG Meng, ZHOU Ming-long, WANG Jing
Abstract:
The quantitative data of logistic demand are the important basis for regional logistic development policy and planning, there are many factors influencing logistic demand, so traditional forecast method can not overall consider all kinds of factors and has lower forecast accuracy. In order to improve the forecast accuracy of logistic demand, combined forecast method is used to set up the combined forecast model based on support vector machines and neural network, firstly support vector machines are used to forecast and forecast basic data are obtained, then residual modification is conducted by BP neural network, and numerical example simulation analysis indicates that combined forecast model has higher accuracy, is a kind of effective forecast model and provides a new idea for logistic demand forecast.
Key words:  logistic demand  support vector machines  neural network
重庆工商大学学报(自然科学版) 版权所有
地址:中国 重庆市 南岸区学府大道19号 重庆工商大学学术期刊社 邮编:400067
电话:023-62769495 传真:
您是第4752954位访客
关注微信二维码