|  | 
			
             			 
		     | 摘要: | 
			 
		     | 笛卡尔乘积是从若干特定的小网络构造大网络的有效方法,边容错直径是衡量一个网络可靠性和效用性的重要标准,研究了笛卡尔乘积网络的边容错直径,并且得到了一个相关的结果。对于任何t1,t2≥1,若G,G分别是t边联通的和t边连通的,则它们的笛卡尔乘积图的边容错直径D't1+t2(G1×G2)≤D't1(G1)+D't2(G2)+1。并且,该不等式中的上界是最好的。 | 
			
	         
				| 关键词:  边连通  笛卡尔乘积  边容错直径 | 
			 
                | DOI: | 
            
                | 分类号: | 
			 
             
                | 基金项目: | 
          |  | 
           
                | Edges Fault-tolerance Diameter on the Cartesian Product Graphs | 
           
			
                | LIU Qi-yun,WANG Jin-jian,XIE Kun | 
           
		   
             
                | Abstract: | 
			
                | The method of Cartesian product is widely used as constructing large interconnection networks from many specific small networks.In this paper,we study the edge fault-tolerant diameter of Cartesian product graphs,which is an important measurement for reliability and efficiency of interconnection entworks.Let G1,G2 be t1-edge-connected graph and t2-edge-connected graph resprctively,then the edge fault-tolerant diameter of G1×G2 has an optimal upper bound that D't1+t2(G1×G2)≤D't1(G1)+D't2(G2)+1,where t1,t2≥1 . | 
	       
                | Key words:  edge-connected  Cartesian product  edge fault-tolerant diameter |