|
摘要: |
求解大型稀疏线性方程组的迭代法不仅是数值代数理论部分的主要内容,也是求解实际问题的重要方法。针对3种典型的求解大型稀疏线性方程组的迭代法,即Jacobi迭代法、Gauss-Seidel迭代法和SOR迭代法,通过实际算例验证并分析了它们的计算速度和效率,为学习和使用迭代法求解线性方程组的学生及工作人员更好地理解和运用迭代法提供了参考和铺垫。 |
关键词: Jacobi迭代法 Gauss-Seidel迭代法 SOR迭代法 线性方程组 |
DOI: |
分类号: |
基金项目: |
|
Discussion on Iteration Solution to the System of Linear Equation |
LI Huan-rong
|
Abstract: |
The iteeration solution to big sparse system of linear equations is not only the main contemts of numerical algebra theory but also an important solution to practical problems.According to three typical iteration solutions to big sparse system of linear equations such as Jacobi iteration,Gauss-Seidel iteration and SOT iteration,their calculation speed and efficiency are analyzed through practical examples,which provide refernce and basis for students and engineers who learn and use iteration solution to linear equation system to better undersand and apply iteration solutions. |
Key words: Jacobi iteration Gauss-Seidel iteration SOR iteration linear equation system |