|
摘要: |
主要研究了Cauchy问题:ut=Δu+up(x)+uq+ku,(x,t)∈RN×(0,1),u(x,0)=u0(x),x∈RN的非负解的爆破性质,其中,01且初值u0(x)充分大时,解u(x,t)在有限时刻爆破;当max{p+,q}≤1时,解u(x,t)对任意初值u0(x)整体存在;在第4部分,讨论了方程的Fujita指标,并给出了解对任意初值爆破的几种情形。 |
关键词: Fujita指标 变指标 非线性抛物方程 整体存在 爆破 |
DOI: |
分类号: |
基金项目: |
|
Blow-up Properties of Solutions to a Nonlinear Parabolic Equations with Variable Index Reaction Term |
TANG Shu-qiao,GUO Yan,SONG Shi-qin
|
Abstract: |
In this paper,we study the blowp-up properties for nonnegative solutions to the following Cauchy problem: ut=Δu+up(x)+uq+ku,(x,t)∈RN×(0,1),u(x,0)=u0(x),x∈RN, here 01 and when initial value u0(x) is sufficiently big.When max max{p+,q}≤1, the solution u(x,t) shows blow-up properties in finite time to any initial value.In section 4,we discuss Fujita indicators of this equation and give several conditions for the solutions blow-up with any initial value. |
Key words: Fujita index variable index nonlinear parabolic equation global existence blow-up |