|
| 摘要: |
| 图G的强边着色是正常边着色且任何长为3的路的边不着双色.图G的强边色数是G的所有强边着色中使用色数的最小者,记为χ's(G).证明了如果图G是平面图且满足g(G)≥14,则χ's(G)≤︱5Δ2-2Δ+1/4︱,其中g(G)表示图G的围长. |
| 关键词: 强边着色 边着色 平面图 |
| DOI: |
| 分类号: |
| 基金项目: |
|
| Strong Edge Coloring of a Class of Planar Graphs |
|
BO Chao-sheng; XIE De-zheng
|
| Abstract: |
| A strong edge coloring of a graph G is a proper edge coloring such that no two edges with the same color lie on a path of length 3.The strong edge chromatic number of G is the smallest number of colors required to obtain a strong edge coloring of G,denoted by χ′s(G).We prove that if graph G is planar and g(G)≥14,then χ′s(G)≤ [5Δ2-2Δ+1/4] colors,g(G) indicate the girth of G. |
| Key words: strong edge coloring edge coloring planar graphs |