| 摘要: |
| 摘 要:对于某些d,若Q ( d)是Euclid域,则在对应的Euclid整环中算术基本定理成立,利用此来证明
不定方程x2 + 11 = 4y3 没有整数解. |
| 关键词: 关键词:不定方程 整数解 Euclid整环 |
| DOI: |
| 分类号: |
| 基金项目: |
|
| On diophantine equation x2 + 11 = 4y3 |
|
WANG Zhen , L I Xiao2yan
|
| Abstract: |
| Abstract: For some d, ifQ ( d) is Euclid field , according to Euclidean domain Q ( d) , arithmetical funda2
mental theorem is carried out. This papermainly uses the method to discuss the integer solution of diophantine e2
quation x2 + 11 = 4y3 , and p roves that the equation has no integer solution. |
| Key words: Key words: diophantine equation integer solution Euclidean domain. |