摘要: |
摘 要:设X 是一实赋范空间, D是X 的非空凸子集. Ti :D →D ( i = 1, 2, ?, m )是m 个渐近一致φ - 伪
压缩的一致L 2L ip schitzian映象. 证明了在一定条件下,关于{ xn }的迭代: xn + 1 = ( 1 - α1, n ) xn +α1, n Tn
1 y1, n ; y1, n
= (1 -α2, n ) xn +α2, n Tn
2 y2, n ; ?; ym - 1, n = (1 -αm, n ) xn +αm, n Tn
m xn , P n≥0强收敛于有限个渐近一致φ - 伪压缩
的一致L 2L ip schitzian映象Ti ( i = 1, 2, ?, m )的公共不动点. |
关键词: 关键词:渐近一致φ2伪压缩映象 迭代序列 不动点 赋范线性空间 |
DOI: |
分类号: |
基金项目: |
|
Approximating fixed point of a finite family of asymptotically identicalφ2pseudo contractive mapping by iteration processes in normed linrear spaces |
|
Abstract: |
Abstract: Let X be a normed linear space, D be a nonemp ty convex subset of X. Let Ti :D →D ( i = 1, 2?m )
be asymp totically identicaiφ2p seudo contractive type mapp ings with common fixed points. It is shown that under
some suitable conditions, the sequence { xn } defined as follows; xn + 1 = (1 -α1, n ) xn +α1, n Tn
1 y1, n ; y1, n = (1 -α2, n )
xn +α2, n Tn
2 y2, n ; ?; ym - 1, n = (1 -αm, n ) xn +αm, n Tn
m xn , P n≥0. Then it converges strongly to the fixed point of Ti ( i
= 1, 2?m ) . |
Key words: Key words: asymp totically identicalφ2p seudo contractive type mapp ing iterative sequence fixed point normed linear spaces |