摘要: |
摘 要:对建立的人工湿地数学模型在两种情况下进行了计算和讨论. 在一级反应情况下ci
n km ,米氏
方程可以简化为r( ci ) = -
rmax
km
ci ,使用拉普拉斯变换对模型进行了求解及分析;在零级反应情况下ci
n km ,米
氏方程可以简为r( ci ) = - rmax ,使用分离变量法对模型进行计算;从而得到不同情况下,给出初值及边值污
染物的相对浓度,为提高人工湿地污水处理提供了有力的理论依据. |
关键词: 关键词:人工湿地 拉普拉斯变化 分离变量法 |
DOI: |
分类号: |
基金项目: |
|
Ponder about a dual quadratic function extreme value |
YUE Chun2hong
|
Abstract: |
Abstract: This article hasmade the further consummation in the teachingmaterial to the dual extreme value of
function’s sufficient condition under the dual quadratic function extreme value’s sufficient condition, has given suf2
ficient condition of binary quadratic function’s extrmum when AC - B2 = 0, thuswhether to take the extreme value
for the dual quadratic function is possible under this situation to make the correct judgment. |
Key words: Key words: dual function quadratic function maximum value minimum value sufficient condition |