摘要: |
摘 要:图G的CB2划分是指: G的一个顶点划分{V1 , V2 , ?, Vn } ,使得每个G[Vi ]为多重完全二部图
(1≤i≤n) . 结合图的顶点CB - 划分条件,确定了一类顶点的度在modulo 4下值为0, 1或3的上可嵌入图
类,较完整地刻画了这类图的上可嵌入情况. |
关键词: 关键词:图 Betti亏数 上可嵌入性 最大亏格 |
DOI: |
分类号: |
基金项目: |
|
A new class of upper2embeddable graphs |
SHENG Xi u2yan
|
Abstract: |
Abstract: Let G be a graph, if there exists a partition { V1 ,V2 , ?,Vn } ofV (G) satisfying G[Vi ] a multip le
comp lete bigraph for any i (1≤i≤n) , then G has a CB2partition. Combined with the condition of CB2partition, it
gives classes of upper - embeddable graphs whose value of degree of each vertex is 0, 1 or 3 respectively, under
module 4. Based on the known results, it characterizes entirely the upper embeddablity of such classes of graphs. |
Key words: Key words: graph Betti deficiency number upper - embeddalility maximum genus |