摘要: |
摘 要:为了改进K—means聚类算法的不足,把混合粒子群优化算法引入到K—means聚类算法
中,重新选取编码方式并构造适应度函数,在此基础上提出了一种改进的K—means聚类算法;通
过两个经典数据集的测试,实验结果表明:改进的算法比K—means算法具有更好的全局寻优能
力、更快的收敛速度,且其解的精度更高对初始聚类中心的敏感度降低。 |
关键词: 关键词:混合粒子群优化算法 K一均值 聚类算法 |
DOI: |
分类号: |
基金项目: |
|
An improved K ——means cluster algorithm |
DAN Han—h ui ,ZHANG Yu二fang ,ZHANG Shi—yong2
|
Abstract: |
Abstract:This paper incorporates hybrid particle swarm optimization algorithm into the K ——means to overcome the
local search of K —means algorithm ,and adds the penalty function to reconstruct the fitness function,and proposes
an improved K —means Cluster Algorithm,the computational experimental results on two benchmark dataset have
shown that the improved K —means has better globe search capability,faster convergence velocity and is to attain
higher precision value than K —moans algorithm. |
Key words: Key words:hybrid particle swarm optimization algorithm K—means cluster algorithm |