|
| 摘要: |
| 利用两种初等的方法,即对方程取某个正整数M>1为模来制造矛盾的同余法和递归序列法,证明了不定方程x3 -1=19y2 仅有整数解(x,y)=(1,0),从而进一步的证明了方程x2 -19y2 =-13无整数解;方程x2 -3r2 =-3仅有整数解(1.0). |
| 关键词: 不定方程,整数解,递归序列 |
| DOI: |
| 分类号:O156.7 O151 |
| 基金项目:重庆教委科研基金项目(010204). |
|
| On the Diophantine Equation x3+1= 19y2 |
|
DUAN Hui-ming
|
| Abstract: |
| In this paper,the author has proved, with two method of contradictor recurrent sequences and congruence when modules of some positive integer M>1, that the Diophantine equation x~3 1=19y~2 has only integer solution(x,y)=(1,0).In fact,we have obtained a m |
| Key words: Diophantine equation,integer solution,recurrent sequence |