我国电影票房收入增长对GDP增速的预测作用——基于混频数据抽样模型的实证分析
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


The Prediction Study of China's Box-Office Revenue Growth in GDP Growth: Empirical Analysis Based on the MIDAS Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    电影产业在我国经济发展中的作用日益显著,电影市场与我国宏观经济发展的内在联系有待深入研究。选取2012年1月到2018年3月我国周度电影票房收入增速作为高频解释变量,采用自回归分布滞后混频数据抽样模型(ADL-MIDAS)分析其与季度GDP增速及月度制造业PMI增速之间的关系,结果表明:电影票房收入增速与GDP增速和制造业PMI增速之间具有负向相关关系,我国电影市场存在“口红效应”,可以根据电影票房收入增长情况对宏观经济走势做出预判。对多种模型的比较结果显示,加入电影票房收入可以显著提高GDP预测精度,电影票房收入可以作为GDP预测指标体系的有益补充。

    Abstract:

    Film industry as an important factor to measure a country's socio-economic development level and cultural soft power needs to be deeply studied whether it has certain predicable functions to a country's macroeconomic development level. This paper uses the autoregressive distributed lag mixture sampling (ADL-MIDAS)model to study and predict the relationship between the weekly Chinese box-office revenue growth as the high frequency explanatory variable and the quarterly GDP growth as the low frequency explained variable from January, 2012 to March, 2018. On the basis of this, this paper also quantitatively analyzes the relationship between the monthly manufacturing PMI growth and weekly box-office revenue growth. The empirical results show that there is a negative correlation between the weekly box-office growth and the quarterly GDP growth as well as the monthly manufacturing PMI growth. China’s films market has “lipstick effect” and the forecast for macro-economy trend can be made by the box-office revenue condition. Adding the weekly box-office data to the monthly macro-variables can significantly improve the quarterly GDP prediction accuracy. The box-office revenue can be used as a beneficial supplement to the GDP forecasting index system in China.

    参考文献
    相似文献
    引证文献
引用本文

魏 宇,杨 惠,梅德祥.我国电影票房收入增长对GDP增速的预测作用——基于混频数据抽样模型的实证分析[J].西部论坛,2018,28(5):117-124

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-10-12