朱富强.自由交易能否实现资源最优配置:科斯中性定理的逻辑缺陷审视[J].西部论坛,2019,29(2):8-20
自由交易能否实现资源最优配置:科斯中性定理的逻辑缺陷审视
Can Free Transaction Achieve the Optimal Allocation of Resources:Examining the Logic Limitation of Coase Neutrality Theorem
  
DOI:
中文关键词:  斯定理  产权界定  交易能力  行为经济学逻辑  市场秩序
英文关键词:Coase Theorem  definition of property rights  trading capability  behavioral economics logic  market order
基金项目:
作者单位
朱富强 1. 河南大学 经济学院河南 开封 4750042. 中山大学 岭南学院广东 广州 510275 
摘要点击次数: 217
全文下载次数: 273
中文摘要:
      科斯中性定理为新古典自由主义经济学所崇尚的基于帕累托改进的自由交换提供了理论支持,但无论是在实践应用上还是理论逻辑上,科斯中性定理本身却存在明显的缺陷。主要体现为:(1)它主要满足于存在两个当事者时的逻辑分析,而没有考虑多人交易中存在的核配置困境;(2)它没有考虑交易各方的交易能力,这涉及交易的可行性问题;(3)它还没有考虑当事者偏好的环境依赖性,这涉及交易的意愿性问题。事实上,如果考虑到因财富差异造成的交易能力差异,那么,在一个交易成本为零并可以自由交易的社会中,初始产权界定给穷人将会产生更高的资源配置效率,显然,这是对科斯中性定理的革命。通过对科斯中性定理中逻辑缺陷的剖析,也就揭示了自发市场秩序在扩展中的基础性障碍。
英文摘要:
      Coase Neutrality Theorem offers a theoretical support for the theory of free exchange based on the principle of Pareto advocated by neo-classical economics, but Coase Neutrality Theorem itself owns obvious limitation both in practical application and theoretical logic. First, it mainly meets the logical analysis in two parties, while not considering the plight of core allocation in more than two parties. Second, it does not consider the capability difference of transaction because of fortune, which is about the feasibility of transaction. Third, it does not consider that preference is depended on environment, which is about the inclination of transaction. Taking an example of considering the capability difference of transaction, it will result in the higher allocation efficiency for resource if the original property rights are given to the poor in a society with zero transaction costs and free-exchange. Obviously, it is a revolution to the Coase Neutrality Theorem. Through analyzing the logical defects of Coase Neutrality Theorem, this paper reveals the basic obstacle for the extension of spontaneous market order.
查看全文  查看/发表评论  下载PDF阅读器
关闭
《西部论坛》编辑部 版权所有
地址:中国 重庆市 南岸区学府大道19号,重庆工商大学学术期刊社 邮编:400067
电话:023-62769479 传真:
您是第1289265位访客
关注微信二维码